
The practical guide
to application hardening

Secure System
s

G
uide

</>

15

The practical guide to application hardening

intertrust.com/whitecryptionGuide

1

What is
application
hardening?

Application hardening, also known as application shielding
or in-app protection, is the process of modifying an existing
application to make it more resistant to hacking attempts
such as reverse-engineering, tampering, and monitoring.
Application hardening protects both the app itself and the
data it uses, and is a required application security method
under various regulations and standards. There are multiple
application hardening techniques; companies may choose
to employ all of them or a subset depending on their
exposure, risk tolerance, and performance requirements.

Why it’s
important

As long as there are applications, there will be application
vulnerabilities that can be exploited by attackers. One of
the most common ways vulnerabilities are introduced is
through ordinary coding errors. The industry standard sits
at 15 to 50 errors per 1,000 lines of code. With modern
applications containing tens of thousands to millions
of lines of code, thousands of potential flaws of varying
levels of severity may exist within any application. A recent
study found that two out of three applications fail initial
tests based on the OWASP Top 10 and SANS 25 industry
standards.1 Hackers can exploit these vulnerabilities to steal
intellectual property and sensitive data, obtain cryptographic
keys, or hijack the application for malicious purposes.

Application hardening shields these vulnerabilities from
attack. Depending on the degree of hardening employed,
it can protect partially or fully against static analysis of
your source code, dynamic analysis of your application
at run time, attacks that attempt to bypass application
or system controls, and even code tampering.

The practical guide to application hardening

intertrust.com/whitecryptionGuide

2

Renaming

This rudimentary form of code obfuscation changes identifiable
variable and method names like “user_name” or “grant_access”
into meaningless character strings to make them confusing to
a hacker. The program execution behavior remains unchanged.
There are several free obfuscation tools that rename classes,
fields, and methods such as Dotfuscator for .NET apps, yGuard
and ProGuard for Java, Sirius and PPiOS-Rename for iOS.2
Renaming is not effective, however, against deobfuscators,
debuggers, or monitoring tools.

Dummy code insertion

With this approach, extraneous code is added into the
application that does not affect program execution or logic, but
does make reverse-engineered code somewhat more difficult
to analyze. Many of the free obfuscators that perform renaming
also insert dummy code.

Unused code and metadata removal

By eliminating dead code, debug information, and non-essential
metadata from applications, it reduces the information an
attacker can obtain and use.

1 Basic application
protections

Best practices
to harden
applications

As with any aspect of application development, you
need to weigh risk, cost, and reward. If your application
has no or low value IP, does not store or access sensitive
information, does not connect with other systems,
and does not use cryptographic keys, then basic
application hardening methods may be enough.

If you want to protect against piracy, data theft, or code
tampering, or if your application could be used as an
entry point to compromise other systems, then more
sophisticated application hardening is recommended.

</>

The practical guide to application hardening

intertrust.com/whitecryptionGuide

3

2
Code obfuscation is a key anti-reverse engineering technique.
The goal is to make the code as confusing as possible while
keeping functionality the same. Unlike the simpler types of
code obfuscation described previously, advanced obfuscation
is more difficult to break, especially when combined with other
advanced hardening techniques.

Control flow obfuscation

With control flow obfuscation, the basic structure of how
subroutines are called is modified to make code more difficult to
trace. It stops decompilers from reconstructing source code by
removing the patterns that they look for. For example, inlining
functions (replacing method calls with the actual method
body), replacing calls to subroutines with computed jumps,
and converting tree-like conditional constructs into flat switch
statements. This latter method, called control flow flattening,
uses a dispatcher to control the flow instead of calling routines
directly from other routines as illustrated in Figure 1.

Figure 1.

Flattening the control flow to prevent reverse-engineering

Broadband

30

30

30

30

30
30

30

30

15

15

15

15

15

60

60

60

30

60

60

60

60

Advanced
obfuscation

Objective-C message call
and metadata obfuscation

In Objective-C, messages to object instances are resolved only
at run time which means that message calls are stored in the
binary code in plain form. Hackers can use this as an attack
vector to manipulate the execution logic. Objective-C code can
be protected by obfuscating plain text message calls contained
within the source code so that they are not easily readable and
editable. It’s also important to encrypt Objective-C metadata,
such as names of classes, methods, protocols, as well as method
arguments and their types, to conceal this useful information
from static analysis tools. The encrypted data is only decrypted
at run time when the obfuscated application is loaded.

The practical guide to application hardening

intertrust.com/whitecryptionGuide

Figure 1.

Flattening the control flow to prevent reverse-engineering

Packers encrypt and compress code, adding a stub that
unpacks it at run time. Hackers use this trick to hide
malware from antivirus scanners as the packed code
does not contain recognizable patterns to detect.

Packing compiled application code makes it difficult for
hackers to reverse engineer as they can’t run the code
through a disassembler or decompiler. Instead, they must
capture the code after it has been decrypted into memory,
and only then reverse engineer it. This essentially stops all
static analysis, forcing the attacker to apply more complex
and time-consuming dynamic analysis techniques.

Binary packing4
Debuggers are used by legitimate software engineers
to find coding errors but in the hands of hackers are a
powerful tool to reverse engineer code. They inspect the
state of an application, extracting information such as which
functions are being called, the values of variables, and
data contained in arbitrary memory locations. Generally,
they work by setting breakpoints in the application—when
that point is reached, the program stops execution and
the user inspects the state at that point. Some debuggers
also perform disassembly and decompilation.

A very basic anti-debugging method is to insert API calls
to query process and system information to check for
the existence or operation of a debugger. For example,
IsDebuggerPresent, CheckRemoteDebuggerPresent, or
by using debugger detaching and CloseHandle checks.
These are fairly easy to add to existing application code.
However, they are also fairly easy for a hacker to bypass.

One of the most effective methods to prevent debugging,
called “modified code anti-debugging,” inserts code in
the application that detects the presence of a debugger
and takes appropriate defensive actions when present.
Typically, it analyzes the application process, comparing
it to the expected norm to discover any debugger-
inserted breakpoints. Kernel syscalls can be used to
bypass hacker-inserted user-mode hooks, which forces
the attacker to modify their kernel, thereby increasing
the skill and effort required for a successful attack.

Anti-debugging3

4

The practical guide to application hardening

intertrust.com/whitecryptionGuide

5

Once hackers successfully break one instance of an application,
they can potentially create an automated tool to break any
other instance of the application. This is known as a class
break or the break once, run everywhere (BORE) problem.

Diversification alters code to create instances of the same
software that are functionally identical, but where the surface
of the code is uniquely different in shape and structure.

Diversification5

A critical part of application shielding involves protecting
cryptographic keys. Too often, keys are hard-coded into
the application where hackers can easily extract them
or are exposed in memory as they are being used in
cryptographic operations. If your keys are compromised,
it’s like having no encryption at all.

Hardware-backed security

Hardware-based protections such as hardware security
modules (HSM), trusted platform modules (TPM), and
trusted execution environments (TEE) can provide strong
protection for cryptographic keys but are complex to
implement across device platforms and can become
vulnerable if the owner has gained root privileges to the
device—for example on a jailbroken phone. They also are
susceptible to some types of side-channel attacks.

Keystores

Many platforms and OSes offer keystores to securely
store and use cryptographic keys (Android Keystore, Java
Keystore, Apple Secure Enclave, Windows Keystore).
These should suffice for applications without high-value
or sensitive information. However, their supported
cryptographic algorithms and operations are often limited
and cryptographic operations must be reimplemented
on each platform.

White-box cryptography

With white-box cryptography, the keys are always
hidden whether in use, in transit, or stored. Generally,
white-box cryptography is not considered as safe as
purpose-built security hardware and computations are
slower. However, white-box software algorithms can be
deployed on devices that lack hardware support and
they function uniformly across platforms. Moreover, keys
remain protected even if an adversary gets root access to
the device. Some white-box cryptography libraries offer
excellent protection against side channel attacks.

Don’t forget about
cryptographic key protection

This effectively thwarts an attacker’s attempts to exploit
information gained from one deployment to compromise
other deployments. It is much harder to develop a universal
cracking scheme for software instances that are diversified.
Instead, each software instance must be cracked individually.

Diversification can be performed across a population of
applications, so that conceivably every application instance
is different. But it is also a useful technique for diversification
of versions of code. For example, if a hacker successfully
reverse engineers Version 2.3 of an application, they will
have to start all over again once Version 2.4 is released.

intertrust.com/whitecryptionGuide

</>

</>

The practical guide to application hardening

intertrust.com/whitecryptionGuide

6

Often attacks aim to modify your application code to
hijack it for their own purposes. They may install rootkits
and backdoors, disable security monitoring, subvert
authentication, and inject malicious code that logs
keystrokes, steals data, escalates user privileges, or performs
other malicious actions. Anti-tampering protections, also
referred to as runtime application self-protection (RASP),
detect and prevent attacks that alter your application.

Integrity checking

Integrity checking hardens applications by inserting
thousands of small, overlapping pieces of code called
checkers as shown in Figure 2. During runtime, each
of these checkers tests whether a particular segment
of the executable has been tampered with. If any
tampering has occurred, actions can be triggered to
protect the application’s integrity such as notifying the
user, calling a custom response function, generating a
log message, or even shutting down the program.

Tampering
protections6 For example, in Figure 2, checker 1 is doing a checksum

of interval 7. If a hacker attempts to modify checker 1, then
checkers 3 and 4 will detect that a change has been made.
The overlapping aspect is critical as it ensures that even if
a hacker disables a checker, there are others checking that
region and that those checkers, in turn, are checked by
several checkers in other regions. It’s also important that
each checker is diversified, with no two looking the same.

Anti-method swizzling

Method swizzling is a feature in Objective-C language—
commonly used on Apple platforms—that has been co-
opted by hackers to attack and change the behavior of
applications. Method swizzling modifies the executable
by mapping a class method name to a different method
implementation, changing its behavior at run time. It is
legitimately used to replace or extend class methods in
binaries for which the source code is not available. In the
hands of an attacker, it can be used to redirect storage
of credit card information to another server, extract
credentials, capture customer information, or other ill intent.

To minimize method swizzling, work mostly in C++
and use ObjC classes as little as possible. Application
hardening solutions, such as whiteCryption Code
Protection, often include mechanisms to detect
swizzling and execute defensive actions.

Figure 2.

Integrity protection using checksum checkers

Checker 1

Interval 1

Interval 2

Checker 2 Checker 3 Checker 4 Checker 5

Interval 3

Interval 4

Interval 5

Interval 6

Interval 7

Interval 8

Checker 6 Checker 7 Checker 8

The practical guide to application hardening

intertrust.com/whitecryptionGuide

iOS jailbreak and Android rooting detection

Jailbreaking an iOS device involves removing the software
and hardware limitations established by Apple by gaining
root access to the device. Similarly, rooting gives privileged
operating system access on Android devices, overriding
limitations established by carriers and hardware manufacturers.
Once a device is jailbroken or rooted, the installed security
controls are breached and a rogue app could access
your application, its data, and credentials and keys.

A critical part of mobile application hardening is giving
your app the ability to detect a jailbroken or rooted
device and take defensive actions accordingly.

Additional tampering detections

The more tampering methods you detect, the more robust
your hardening. Best practices dictate that your application
includes detection and response mechanisms against specific
relevant attacks. Below are some commonly used protections.

Function caller verification

An executable application file contains a number of
functions. Normally, there is a predefined logic how and
when these functions are called at run time. However, a
skilled hacker can analyze the binary code, find vulnerabilities
in the execution logic, and alter the original flow of the
program by calling some functions in an unexpected
way, for example on Windows, by using DLL injection.

To guard against such manipulation of function calls, create a
whitelist of modules (*.dll or *.exe files) that are allowed to call
certain sensitive functions of the application code. Store the
signatures of these authorized modules within the application
binary and use at run time to verify function caller modules.

Shared library cross-checking

One attack path used by hackers is to replace or modify
the shared libraries called by an application. To decrease
risk from this type of attack, limit the use of shared
libraries as much as possible. For the shared libraries
your application does use, implement cross-checks to
detect library tampering. For example, you can create
cryptographic signatures for each library and perform
random checks during run time to make sure they match.

Mach-O binary signature verification

All macOS, iOS, and tvOS applications distributed via the
App Store are signed with Apple’s private key, which prevents
piracy and unauthorized distribution. However, members
of Apple’s Developer Program can re-sign any application
with their own private key included in the development
certificate, allowing the application to be run on corresponding
development devices. Several services on the Internet
illegally re-sign apps to distribute paid apps for free. You can
insert safeguards into your application to protect against
unauthorized re-signing and distribution of apps in the
Mach-O file format (used by macOS, iOS, and tvOS apps).

Google Play licensing protection

Application piracy remains a primary concern for Android
developers. While Android provides an anti-piracy library
to verify and enforce licenses at run time, this Java-based
library can be easily cracked. An effective protection
against piracy is to replace the Google Play license
verification library with a hardened implementation that
is more difficult to reverse engineer and modify.

77

The practical guide to application hardening

intertrust.com/whitecryptionGuide

8

In-app
defense actions7

Once your application identifies a tampering attempt,
it should trigger a defensive response. The simplest is
to shut down the application. However, some types of
attacks pose less risk and may not warrant such extreme
action. Or you may want to trick the hacker into thinking
they were successful so they stop attacking your app.
For example, if you are protecting a game, you can
secretly corrupt the game map instead of crashing the
application so that it appears cracked to the hacker but
actually has been transformed into an unplayable state.

Common defense actions include:

• Blocking account access

• Generating a log message to be sent to administrator

• Halting the execution of commands

• Corrupting elements of the application so a hacker
believes they have been successful, but they only have
minimal access

• Deletion of sensitive data

• Shutting down the application entirely

Real-time, automatic defense actions provide a
clear advantage over generating alerts that need
to be investigated and manually remediated. This
type of complex detection and response generally
requires a third-party in-app protection solution.

whiteCryption Code Protection from Intertrust injects self-
defending capabilities into your application. It prevents
tampering, reverse engineering and other techniques
used by cyber-criminals to gain access to sensitive
information and your app code. whiteCryption Code
Protection uses multiple defense methods including
code obfuscation, code flattening, and real-time intrusion
detection, strengthening your app security in minutes.

Intertrust also offers whiteCryption Secure Key
Box, a state-of-the-art white-box cryptography tool
that keeps secret cryptographic keys well hidden
within the app code, even during runtime.

Learn more at intertrust.com/whitecryption

Notes
1 Veracode, State of Software Security, Volume 10

2 This is not a comprehensive list of free obfuscators and
 Intertrust does not endorse or recommend these products

In-App
protection using
whiteCryption
Code Protection

Start protecting your applications today.
For a free trial of whiteCryption Code Protection, visit:
intertrust.com/code-protection-free-trial

Learn more at: intertrust.com
Contact us at: +1 408 616 1600

Intertrust Technologies Corporation
920 Stewart Drive, Sunnyvale, CA 94085

Copyright © 2020
Intertrust Technologies Corporation.
All rights reserved.

Building trust for
the connected world

</>

https://intertrust.com/code-protection-free-trial

