
 

SKBWP082018

TABLE OF CONTENTS
Executive Summary 1 ...
1 The Challenge of Keeping Cryptographic Keys Safe 2 ...

1.1 Examples of Cryptographic Key Attacks 2 ..

Volkswagen Remote Key System 3 ...

Tesla Mobile Application 3 ..

Nintendo Wii Console 3 ..

1.2 How Adversaries Attack Cryptographic Keys 3 ...

Brute-Force Attack 3 ...

Theoretical Loopholes and Implementation Errors 3 ..

Static Analysis 4 ...

Dynamic (or Memory) Analysis 4 ...

Eavesdropping on Network Communication 5 ...

Side-Channel Attacks 5 ...

2 Methods for Protecting Cryptographic Keys 5 ...
2.1 Hardware-Based Security 5 ...

2.2 Keystores 6 ...

2.3 White Box Cryptography 6 ..

Academic Work on White Box Cryptography 7 ..

How White Box Cryptography Works 7 ..

Choosing the Right Key Protection Technique 8 ..

3 whiteCryption Secure Key Box 8 ..
3.1 Main Features 9 ...

3.2 Security Aspects 10 ...

Encrypted Domain 10 ...

Obfuscation 10 ..

Diversification 10 ...

Protection against White Box Attacks 11 ..

4 Select Use Cases 11 ..
Tokenized EMV Payment Solution 11 ..

Digital Rights Management System 12 ...

5 Related Products 12 ...
6 Next Steps 13...

Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

Executive Summary
In past decades, data security was identified with massive physically secure data centers and corporate
controlled computing assets. Today’s reality is that many software applications are running on unmanaged
devices in vulnerable and targeted networks. Adversaries can easily gain physical access to many devices
that need to protect internal secrets, including mobile phones, IoT devices, automobiles, set-top boxes,
and medical equipment. Even in a well-secured corporate setting, the perimeter is increasingly hard to
define and defend because not all devices on a corporate network are adequately managed or secure,
(e.g. BYOD). Widespread malware deployments make it likely that devices, no matter how well managed,
are subject to infection. Consequently, there is a high risk that adversaries can easily examine and attack
these kinds of devices.

In this paper, we will focus on one particular security risk that is inevitable in today’s open and insecure
digital environments — namely, the security of cryptographic keys. As will be further explained,  
a cryptographic key is the cornerstone concept of most security schemes used on billions of devices all
over the world. While cryptography is designed to ensure protection of confidential data, it does not
automatically eliminate the risk of attacks on such data because cryptographic security relies on the
security of keys. In reality, cryptography merely shifts the problem of protecting data to protecting keys.  
In fact, in many situations, a single key may protect many different pieces of data, and so securing those
keys is of paramount importance. Unwarranted extraction of a key from a cryptographic module essentially
nullifies the entire security system. The consequences of a compromised key can include financial loss,
liability, regulatory fines and impact to brand reputation.

The overview of common techniques hackers use to discover keys will be provided, such as the use of
static and dynamic analysis, network eavesdropping, and side-channel attacks. In addition, the established
methods for fighting these attacks will also be discussed, and the concept of white box cryptography  
will be explained.

Finally, this white paper will focus on Intertrust’s industry-leading solution to protecting cryptographic keys
in software — whiteCryption® Secure Key Box™, a white box cryptography library that provides a secure
implementation of the standard cryptographic algorithms that completely hides the cryptographic keys
in the binary code and makes key extraction attempts extremely difficult.

!1Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

1 The Challenge of Keeping Cryptographic Keys Safe
Cryptography is the foundation of data security in digital assets and services used by millions every day.  
It enables secure communication, strong authentication, and protection of confidential information.  
Bank cards, ATMs, Pay TV, cloud computing, online payments, and connected cars are just a few examples
of modern systems that would be highly vulnerable and impractical without the use of cryptography.

At the core of cryptography lies the concept of a key — a small piece of information that determines the
output of cryptographic operations (encryption, decryption, signing, verification, etc.). Having access to 
the right key opens the door to all the secret data protected by that particular cryptographic algorithm  
and that key.

Figure 1: Fundamentals of Cryptography

While those that use cryptographic algorithms generally acknowledge the need to protect their secret
data, the necessity to protect the cryptographic keys themselves is often overlooked. A misguided
assumption is that the secret cryptographic keys are not accessible to the adversary; however, that is not
the case. In the vast majority of cases, cryptographic algorithms expose their keys in the clear to the
execution environment in one way or another. There are many ways how the keys can be obtained, as
explained later in the “How Adversaries Attack Cryptographic Keys” section. Therefore, one of the main
points of emphasis is that it is absolutely critical to protect cryptographic keys.

If hackers were to obtain cryptographic keys, they could potentially eavesdrop on secure communication,
spoof a user, manipulate network transactions, and/or infiltrate the system to exfiltrate confidential
information. The effects of broken cryptographic modules and stolen keys can be significant for
governments, financial institutions, automotive manufacturers, healthcare organizations, and gaming
distributors. Financial loss, damaged brand reputation, exposure to liability, and sometimes even loss of
human life can all result from the failure to ensure adequate protection of cryptographic keys.

1.1 Examples of Cryptographic Key Attacks
The following are some of the well-known attacks on large organizations involving discovery of
cryptographic keys.

!2Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

Volkswagen Remote Key System
In 2016, a team of computer scientists published a paper on a flaw that applies to practically every car
Volkswagen has sold since 1995. By using an inexpensive and readily available piece of radio hardware,
they could intercept signals from a victim’s key fob, discover the secret keys used, and then clone the
original remote . 1

Tesla Mobile Application
In 2016, a team of security experts demonstrated a vulnerability that allowed them to gain full control over
a Tesla Model S by overcoming the security measures of the Tesla mobile application. The application is
authenticated using a secret key stored locally by the application. Since the key was stored in the clear, it
became vulnerable to theft by malware on a mobile device. The vulnerability was executed in practice by
installing a malicious version of the Tesla mobile application . 2

Nintendo Wii Console
In 2007, a hacker was able to obtain secret encryption keys used on the Nintendo Wii console by
exploiting a bug in the signature verification algorithm and compromising the keys that were stored in the
external GDDR3 RAM in unencrypted form. As a result, the anti-piracy measures of the console were
broken, allowing unsanctioned software to be installed and run on the Wii hardware . 3

1.2 How Adversaries Attack Cryptographic Keys

This section provides an overview of the common methods used by hackers to extract secret keys from
various systems. The focus is that key extraction is a serious risk and safeguarding your systems against
such attacks is a significant task.

Brute-Force Attack
In a brute-force attack, the attacker tries a huge number of inputs to see if one works. For example, many
password-cracking algorithms (Brutus, RainbowCrack) work this way, trying millions of common passwords
until one is found that works. That is why you are always asked to pick passwords with hard to remember
combinations of upper- and lower-case digits, numbers, and special characters.

Usually, brute-force attacks are only effective for breaking cryptographic algorithms that deal with small key
sizes. With the industry’s latest standard crypto algorithms, brute-force attacks are generally unfeasible.

Theoretical Loopholes and Implementation Errors
Threat actors might attempt to find theoretical weaknesses or implementation bugs in cryptographic
algorithms or protocols that would allow them to quickly bypass the security protections inherent in a
particular algorithm or protocol. A classic example of this is the man-in-the middle attack against the
Needham-Schroeder Public-Key Protocol . This attack demonstrated a fundamental weakness in the 4

protocol that enabled an unforeseen attack to succeed. The Wired Equivalent Privacy (WEP) protocol is

!3Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

another case where a theoretical vulnerability was discovered and published in a paper . A more recent 5

example that leveraged a vulnerability in the OpenSSL cryptographic software library was the notorious 6

Heartbleed vulnerability.

As demonstrated by these examples, even well-established standards and systems are subject to the risk of
being attacked and compromised.

Static Analysis
By analyzing the static machine code of a software executable such as the binary image in the device
storage, hackers can easily discover cryptographic keys if they are stored in the clear. Identifying potential
keys in the code is made easier by the fact that cryptographic keys are random sets of bits exhibiting high
entropy. In contrast, most uncompressed machine code has relatively low entropy . As a result, a key is 7

likely to stand out against the background of low-entropy non-key data. The following figure visualizes
machine code in 2D, such that one pixel represents one bit, and each column represents 64 bits of
sequential data (ordered left to right). A human eye can quickly identify a region characterized by high
randomness, which may indicate a cryptographic key. The process of pinpointing of such regions can be
easily automatized.

Figure 2: Discovering High-Entropy Key Material Within the Binary Code

Static analysis is one of the most effective attacks if the hacker has access to the device storage or any
channel used to deploy the executable code, and if the keys are stored as cleartext.

Dynamic (or Memory) Analysis
While encrypting a key on a storage medium is a fairly simple procedure, hiding the key in device memory
is much more complicated because at some point, the key needs to be provided to a cryptographic
algorithm as valid input. In most cryptographic libraries this is the moment when the key is decrypted in
the memory as plaintext and becomes susceptible to extraction. With the right set of tools, attackers can
dynamically analyze the memory and hijack cryptographic secrets during execution of the software. There
are automated tools which are readily available that can instantly discover secret keys in any arbitrary
process running on a device . 8

!4Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

Eavesdropping on Network Communication
Secret keys should never be transferred over any network in unencrypted form, as this enables threat
actors to easily exploit keys. From a security point of view, the Internet should be viewed as a completely
transparent ecosystem where hackers can potentially see all the data you exchange with other endpoints.
Consequently, it becomes absolutely clear that cryptographic keys and other secrets sent through the Web
must always be protected. The common practice is to encrypt all secrets before they are sent over the
Internet, and never expose these keys used for encrypting the secrets. There are established methods for
agreeing on encryption keys on both endpoints without sending them over the Internet, such as the  
Diffie-Hellman key exchange algorithm . 9

Side-Channel Attacks
In these attacks, the attacker does not attempt to access the key directly in the device, but rather attempts
to reconstruct the key from indirect signals and the physiology of internal components in the device. For
example, in some cases it is possible to reconstruct a key by measuring the power consumption of a chip . 10

In another example, the attacker injects faults into the algorithm by subjecting the hardware to extreme
temperature and then observes the behavior of the algorithm in order to reconstruct the key . 11

Under certain circumstances, keys can be extracted from devices even when they are powered off. This
type of side-channel attack relies on memory retention that is common in most modern devices. Even after
the device is powered down, the internal memory retains its contents for seconds to minutes at normal
operating temperatures, even if it is removed from a motherboard . To execute the attack, a hard reboot 12

of the device is performed and a removable disk is then immediately used to boot a lightweight operating
system, or in some cases the memory modules are removed from the original system and quickly placed in
a compatible machine. Further analysis can then be performed against the information that was dumped
from memory to find the cryptographic keys contained in it. Automated tools are now available to perform
this task for attacks against some popular encryption systems . 13

2 Methods for Protecting Cryptographic Keys
In the previous section, we explained the importance of keeping cryptographic keys hidden and safe —  
a fact that is often ignored even by large corporations. At the same time, we showed that ensuring good
key protection is not an easy task since there are a wide array of techniques that hackers use to attack
cryptographic systems and steal keys.

In this section, we outline the main categories of countermeasures against discovery of cryptographic keys.

2.1 Hardware-Based Security
To deal with key protection challenges, hardware-based security is commonly used to provide strong
protection for the keys on devices. Some examples are hardware security modules (HSM), trusted platform
modules (TPM), and trusted execution environments (TEE). The security of these systems relies on the fact
that it is very difficult and expensive for attackers to reverse engineer a hardware module and manipulate

!5Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

its internal data. Generally speaking, hardware security systems can be considered “black box models”
because their internal workings are essentially hidden to the observer.

Although hardware-based approaches do provide excellent security advantages, there are also  
significant downsides:

• Hardware-based security adds cost to a system. Manufacturers of platforms might choose cost sensitivity
over the security risks of compromised keys — security is usually an afterthought.

• Vulnerabilities in hardware are difficult and potentially expensive to mitigate. Examples like Meltdown
and Spectre illustrate that hardware and software manufacturers might need to spend large amounts of 14

money and resources to issue patches to fix vulnerabilities in existing deployments.

• Different devices may contain different hardware with varying functionality that require complex logic
in applications built to run on a wide range of devices.

• As it was explained in the “Side-Channel Attacks” section, hardware is not immune to attacks. Clever
approaches such as differential power analysis can be used to extract keys from hardware by examining
indirect patterns in signals emanating from the hardware.

• There are business models which preclude application developers from using secure hardware on a
device even when it exists. Such is the case with Apple iPhone, where although it has ARM processors
with the TrustZone extension, third-party applications are generally not allowed to use that functionality.

2.2 Keystores
Most operating systems and execution platforms offer some kind of means for storing and using
cryptographic keys in a secure manner. Examples of these include Android Keystore, Java Keystore, Apple
Secure Enclave, and Windows Keystore. In some cases, these keystores are backed up by hardware-based
security, if such technology is available on the device. Typically, keystores are used for certificate and key
pair management associated with SSL communication.

While such keystores are sufficiently secure, they cannot be considered general-purpose cryptographic
libraries. For instance, usually the list of supported cryptographic algorithms and operations is quite
limited. Moreover, in some cases it is not possible to import an existing key into the keystore. Another
important factor to consider is that such keystores are built for a particular target platform, which means
that supporting the same application on multiple platforms will require re-implementing the cryptographic
operations on each of them. Because of these reasons, relying on a platform-specific keystore may be
impractical and expensive, depending on the use case.

2.3 White Box Cryptography
The objective of white box cryptography is to implement cryptographic primitives in such a way that, within
the context of the intended application, having full access to the cryptographic implementation does
not present any advantage for an adversary in comparison to the adversary working with the
implementation as a black box . In simple terms, white box cryptography is a general-purpose software 15

!6Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

implementation of cryptographic algorithms that attempts to hide keys. Since software is easily examinable
if the hacker has access to the device, such software execution environment is called a “white box model”.

Academic Work on White Box Cryptography
The premise of white box cryptography may seem like impossible magic, but university researchers have
been studying the problem of general obfuscation since 2001. Over time, several academic derivatives of
white box cryptography have emerged, such as the following:

• Functional encryption (since 2005) combines basic encryption with mathematically forged  
access control.

• Fully homomorphic encryption (since 2009) enables secure computing with encrypted data on an
untrusted cloud server.

• Indistinguishability obfuscation (since 2013) achieves (as well as theoretically possible) general software
obfuscation which has been called “crypto-complete” as a flood of exotic cryptographic applications can
be built from indistinguishable obfuscation.

While most of these advanced cryptographic techniques are theoretically possible, they are practically
infeasible as they require enormous amounts of computational resources to solve even the simplest
problems. These are active areas of investigation, and researchers are making continual progress.  
However, it may be decades before some of these techniques are practical.

How White Box Cryptography Works
To implement white box cryptographic primitives it is necessary to provide functionality equivalent to the
standard algorithms without revealing the intermediate values arising within the usual algorithms. One
general technique is to encode and thereby obscure inputs, outputs, and intermediate values. Another
technique is to rearrange steps into less revealing combined operations.

Figure 3: Unobfuscated implementation versus white box implementation

!7Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

As illustrated in the figure above, in a “regular” or unobfuscated implementation, the secret keys and
execution logic are clearly distinguishable and easy to tamper with. In a white box implementation, the
internal data and execution flow are obscure and inseparable — the keys cannot be easily extracted and
making any modifications to the code can result in breaking the entire executable. One way this is
frequently done in white box implementations is to move computations into tables which can be easily
randomized and are difficult to reverse engineer.

Choosing the Right Key Protection Technique
Generally speaking, software-based security cannot be considered as safe as dedicated purpose-built
security hardware, and computations performed within a software white box environment will always be
slower. However, the obvious advantage of white box software algorithms over their black box hardware
counterparts is that they can be deployed on devices without hardware support. White box software
algorithms can support the same functionality on any platform, and they can be easily and cost-effectively
upgraded if vulnerabilities are found. In some cases, it may be desirable to have both software and
hardware protection in place to provide defense in depth. All these factors must be carefully evaluated
when choosing the desired key protection technique.

Intertrust’s whiteCryption Secure Key Box is the world’s leading implementation of white box
cryptography algorithms that provides a robust solution to the problem of securing keys in software and
ensures protection against the vast majority of key attacks including static and dynamic analysis as well as
side-channel attacks.

The subsequent part of this white paper will be focusing on the whiteCryption Secure Key Box library and
how the particular features address various threats aimed at cryptographic keys and other inner parts of
cryptographic algorithms.

3 whiteCryption Secure Key Box
whiteCryption Secure Key Box (SKB) is a cross-platform library that provides advanced white box
implementation of a number of cryptographic algorithms. It allows standard cryptographic functions  
to be performed without the keys ever being in the clear. Because of its strong protection design, SKB  
is extremely difficult to reverse engineer and tamper with. SKB employs patented technologies and has
successfully passed a number of third-party security audits.

In the case of existing software applications that already have cryptographic modules in place, SKB can
simply replace those modules in code. Therefore, the SKB-protected application will be functionally
equivalent to the original application and ensure robust protection of its keys.

!8Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

Figure 4: Applying SKB protection to the target application

The general procedure for applying SKB protection is as follows:

1. Link the static SKB library with the target application that you want to protect.

2. Change the code that uses the low-level cryptographic functions so that they employ the SKB API.

3. Build and deploy your SKB-protected application.

3.1 Main Features
SKB provides white box implementation for a number of industry’s standard algorithms that can be run  
on a vast array of target platforms as can be seen in the following tables:

!9Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

Supported algorithms

Encryption

Decryption

Signing

Verification

Key generation

Key wrapping

Key unwrapping

Key agreement

Digests (hashing) of keys

Key derivation

Supported platforms

Android

iOS

tvOS

macOS

Windows

PlayStation

glibc/Linux

uClibc/Linux

musl/Linux

MinGW

The most popular ciphers such as AES, RSA, ECC, DES, and Speck are supported. Since the exact list of
supported algorithms and target platforms is constantly changing, please consult the SKB User Guide or
contact your whiteCryption account executive for the latest set of supported functions and platforms.

3.2 Security Aspects
In this section, we touch upon some of the generic security characteristics of SKB.

Encrypted Domain
An encrypted domain is a part of a program where all the data is stored in encrypted form and all the
operations are obfuscated. Due to the execution speed trade-off involved (since obfuscating code
necessarily results in a performance penalty), an encrypted domain is typically never used for an entire
program, but rather just for its crucial parts such as the cryptographic algorithms and the program code
that handles the keys.

SKB provides a complete encrypted domain for working with cryptographic keys. The library exposes a set
of API functions to the calling application in such a way that there is no possibility (and no need) for the
application or hacker to obtain the keys in plaintext.

Computation in an encrypted domain is a central feature of SKB. This means that even when a
cryptographic algorithm is being executed, the keys and other data it is working with are never revealed  
in plaintext. In addition, any attempts to tamper with the algorithm or separate keys from it will most likely
result in crashing the application.

Obfuscation
SKB hides the secret keys and the execution flow of the cryptographic algorithms. It is nearly impossible  
to reverse engineer the logic and trace the logical steps. Since the standard debugging tools yield no
meaningful statistics to the threat actors analyzing the unique white box code, the traditional tampering
methods are ineffective with SKB.

Therefore, even if there are any theoretical weaknesses discovered in the industry’s cryptographic
algorithms implemented by SKB, the obfuscated nature of the way the library works will greatly  
encumber the potential attacks or even render them impossible.

Diversification
Software diversification is a method of adding randomization to an executable binary and its input and
output data so that various instances of the same software appear different in every case. Software
diversification confounds an attacker’s attempts to exploit information gained from one deployment to
compromise other deployments. It is much harder to develop a universal cracking scheme for software
instances that are diversified, i.e., each software instance must be cracked individually.

Diversification is an integral component of all whiteCryption products. SKB in particular, has a two-tier
diversification scheme in place. First, the binary of each SKB instance is generated from a random seed

!10Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

which ensures code diversity, meaning, the binary footprint of every application that employs the library is
unique, rendering creation of universal cracking tools almost impossible. Second, every SKB instance uses
a different pattern for encrypting the keys it saves and loads from the storage (data diversity). This means
that the hacker cannot take the SKB library from one compromised application and use it to decrypt keys
from other applications.

Protection against White Box Attacks
The research team behind Secure Key Box is constantly self-testing and improving the product to ensure
security against known white box attacks. One example is the Billet attack, which is probably the best-
known attack that can be made against certain types of AES white box implementations . The attack 16

depends on certain characteristics to be present in the particular AES white box implementation. For
example, it is assumed the white box implementation looks like a sequence of S-box applications and
permutations of the encoded bytes. The SKB implementation of AES however, does not have the
characteristics that allow the specified type of attack to be applied. Hence, the attack is rendered  
useless against SKB.

4 Select Use Cases

Tokenized EMV Payment Solution
A typical use case for SKB is to secure parts of a tokenized EMV payment solution on a mobile device.  
The main functions of such systems include device provisioning, token provisioning, storage of token data,  
and token processing.

Device provisioning involves establishing an identity of the mobile device and linking it to the identity of
the cardholder within the payment ecosystem. During this process the device acquires a unique key that is
linked with the cardholder identity (as known by the card issuer). Device provisioning may use a key
agreement scheme between device and server, key derivation, a digital signature for authentication,
encryption/decryption for session traffic, as well as secure and device-bound storage of the acquired key.
Token provisioning is requesting and receiving the single-use tokens for later use in payment transactions.
During this process, a digital signature is used for authentication, and encryption and decryption are used
for session traffic and protection of token data while in transit and while at rest on the device. Token
processing happens during the payment when the token is used (as a replacement for the PAN card
number); it involves decrypting token data, calculating the authentication value (Retail MAC), and
encrypting the modified token data.  
 
As can be seen, a large number of cryptographic operations are involved in this use case. All of these
operations are supported by SKB while ensuring that the involved keys and other secrets are never
revealed in the clear. This allows deployment of the payment application on devices that do not support
the hardware-based security environment and on devices where such environment is not available  
to developers.

!11Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

Digital Rights Management System
Global entertainment and media companies have increased their value through innovative global
streaming services, programs, live concerts, daily behind-the-scenes interviews, live sports broadcasts and
a variety of music and news events that can be viewed on mobile devices. More importantly, consumers
can now view specific entertainment content on their own devices just about anywhere, including planes,
taxis, and other forms of public transportation. To protect the content from being stolen, digital rights
management (DRM) systems must be in place, and to protect the players’ applications themselves, mobile
security application solutions are a necessity.

Because DRM systems involve multiple cryptographic operations and depend on the integrity of
cryptographic keys, developers should add a layer of protection to their DRM applications to prevent
hackers from breaking the DRM system or stealing the secret keys. SKB is an ideal tool for this purpose
because it supports all the industry standard cryptographic algorithms used in DRM solutions, and never
reveals cryptographic keys in the clear.

5 Related Products
In addition to whiteCryption Secure Key Box, Intertrust offers whiteCryption® Code Protection™,  
a comprehensive code protection solution intended for hardening software applications on multiple target
platforms. It adds tamper resistant characteristics to applications by applying code obfuscation, integrity
protection, anti-debug, and anti-piracy techniques to application code. Code Protection can protect any
standards compliant C/C++/Objective-C/Swift or Android Java source code, and requires no significant
changes to the code itself or the existing build chain.

While whiteCryption Secure Key Box specializes in protecting keys and hardening cryptographic
algorithms, Code Protection is the ideal solution for protecting generic application code, such as anti-
piracy logic and intellectual property. Using Secure Key Box and Code Protection together delivers the
ultimate security solution your software and business require.

Intertrust also offers Seacert™, a mass scale key provisioning and managed PKI service. Seacert has
delivered over 5 billion keys to market in the last decade. Seacert is industry agnostic and can be used in  
a variety of appliances, IoT devices, and applications from embedded keys in silicon, to connected car
applications, to health care devices, connected systems and critical applications. Seacert is a scalable PKI
solution that delivers credentials including cryptographic keys and digital certificates for factory floor and
field key provisioning environments. The Seacert Certificate Authority is WebTrust Certified and meets the
highest criteria of PKI management so you can manage your solution with confidence. For more
information about these products and services, see the Intertrust website. 

!12Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

https://www.intertrust.com

6 Next Steps
This white paper has presented an in depth look into whiteCryption Secure Key Box. Our state-of-the art
protection mechanisms will help you shield your cryptographic keys from attacks and protect the most
important assets for you and your customers.

Contact us to see how Intertrust can help you protect your cryptographic keys, get a demo, start a free
trial, or to learn more about Intertrust products and solutions.

To find out more, go to https://www.intertrust.com/products/application-shielding

!13Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

https://www.intertrust.com/company/contact-us/
https://www.intertrust.com/products/application-shielding

About Intertrust Technologies Corporation

Intertrust provides trusted computing products and services to leading global corporations – from mobile and CE manufacturers
and service providers to enterprise software platform companies. These products include the world’s leading digital rights
management, software tamper resistance and privacy-driven data platforms for AdTech, DNA storage, and IoT.

Founded in 1990, Intertrust is based in Silicon Valley, with regional offices in London, Mumbai, Tokyo, Seoul and Beijing. The
Company has a legacy of invention, and its fundamental contributions in the areas of computer security and digital trust are
globally recognized. Intertrust holds hundreds of patents that are key to Internet security, trust, and privacy management
components of operating systems, trusted mobile code and networked operating environments, web services, and  
cloud computing. 

About whiteCryption

whiteCryption, a subsidiary of Intertrust Technologies, is a leading provider of application shielding solutions to prevent hackers
from reverse engineering and tampering with code. We specialize in advanced obfuscation, runtime application self-protection
(RASP), and white-box cryptography solutions for mobile applications, desktop applications, firmware and embedded applications.
whiteCryption protects content for the automotive, banking/finance, healthcare, and entertainment industries.

Copyright Information

Copyright © 2000-2018, whiteCryption Corporation. All rights reserved. 
Copyright © 2004-2018, Intertrust Technologies Corporation. All rights reserved. 
whiteCryption® is either a registered trademark or a trademark of whiteCryption Corporation in the United States and/or other
countries. 
Windows® is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. 
macOS™ is a trademark of Apple Inc., registered in the United States and other countries. 
IOS® is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license. 
Android™ is a trademark of Google Inc., registered in the United States and other countries. 
PlayStation® is a trademark or registered trademark of Sony Computer Entertainment Inc. 
All other trademarks are the property of their respective owners.

Contact Information

Intertrust Technologies Corporation 
920 Stewart Drive  
Suite #100  
Sunnyvale, California 94085, USA

https://www.intertrust.com

!14Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

https://www.intertrust.com

Sources

 https://www.documentcloud.org/documents/3010178-Volkswagen-amp-HiTag2-Keyless-Entry-System.html1

 https://promon.co/security-news/hacking-tesla-app-stolen-car2

 https://marcan.st/uploads/25c3_console_hacking3

 G. Lowe, “An attack on the Needham-Schroeder public key authentication protocol”, Information Processing Letters, Volume 56, Issue 3, 19954

 S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4”, Selected Areas in Cryptography. SAC 2001. Lecture Notes 5

in Computer Science, vol 2259, 2001

 http://heartbleed.com6

 A. Shamir, N. van Someren, “Playing Hide and Seek With Stored Keys”, Financial Cryptography. FC 1999. Lecture Notes in Computer Science, vol 7

1648, 1998

 https://github.com/mmozeiko/aes-finder8

 https://tools.ietf.org/html/rfc26319

 P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis”, CRYPTO '99 Proceedings of the 19th Annual International Cryptology, Conference on 10

Advances in Cryptology, 1999

 M. Hutter, J. Schmidt, “The Temperature Side Channel and Heating Fault Attacks”, CARDIS, 201311

 J. A. Halderman et al, “Lest We Remember: Cold Boot Attacks on Encryption Keys”, Proc. 17th USENIX Security Symposium (Sec ’08), 200812

 https://www.prnewswire.com/news-releases/passware-software-cracks-bitlocker-encryption-open-78212917.html13

 https://meltdownattack.com14

 B. Wyseur, “White Box Cryptography”, PhD thesis, 200915

 O. Billet, H. Gilbert, C. Ech-Chatbi, “Cryptanalysis of a White Box AES Implementation”, Selected Areas in Cryptography. SAC 2004. Lecture 16

Notes in Computer Science, vol 3357, 2005

!15Copyright © 2018 Intertrust Technologies Corporation. All rights reserved.

https://marcan.st/uploads/25c3_console_hacking
http://heartbleed.com
https://github.com/mmozeiko/aes-finder
https://promon.co/security-news/hacking-tesla-app-stolen-car
https://tools.ietf.org/html/rfc2631
https://meltdownattack.com
https://www.documentcloud.org/documents/3010178-Volkswagen-amp-HiTag2-Keyless-Entry-System.html
https://www.prnewswire.com/news-releases/passware-software-cracks-bitlocker-encryption-open-78212917.html

	Executive Summary
	1 The Challenge of Keeping Cryptographic Keys Safe
	1.1 Examples of Cryptographic Key Attacks
	Volkswagen Remote Key System
	Tesla Mobile Application
	Nintendo Wii Console
	1.2 How Adversaries Attack Cryptographic Keys
	Brute-Force Attack
	Theoretical Loopholes and Implementation Errors
	Static Analysis
	Dynamic (or Memory) Analysis
	Eavesdropping on Network Communication
	Side-Channel Attacks
	2 Methods for Protecting Cryptographic Keys
	2.1 Hardware-Based Security
	2.2 Keystores
	2.3 White Box Cryptography
	Academic Work on White Box Cryptography
	How White Box Cryptography Works
	Choosing the Right Key Protection Technique
	3 whiteCryption Secure Key Box
	3.1 Main Features
	3.2 Security Aspects
	Encrypted Domain
	Obfuscation
	Diversification
	Protection against White Box Attacks
	4 Select Use Cases
	Tokenized EMV Payment Solution
	Digital Rights Management System
	5 Related Products
	6 Next Steps

